
CS1112 Fall 2022 Project 3 due Wednesday Oct 5 at 11pm

You must work either on your own or with one partner. If you work with a partner you must first register as a group

in CMS and then submit your work as a group. Adhere to the Code of Academic Integrity. For a group, “you” below

refers to “your group.” You may discuss background issues and general strategies with others, but the work that

you submit must be your own. In particular, you may discuss general ideas with others but you may not work out

the detailed solutions with others. It is not OK for you to see or hear another student’s code and it is certainly not

OK to copy code from another person or from published/Internet sources. If you feel that you cannot complete the

assignment on you own, seek help from the course staff.

Ground Rule

As stated before, do not use any built-in functions or constructs that have not been discussed in the course.

Objectives

Completing this project will solidify your understanding of user-defined functions and vectors. You will learn
how to do a sensitivity analysis, which is an important concept and tool in engineering and computational
science, and produce scientific graphics.

1 Cornell Tennis Center

Complete Problem P5.3.7 in Insight (page 126), with a few additional requirements/changes described here.
Be sure to read Insight §5.3 first—it’ll help you with this problem! You will submit two m-files in CMS: a
function file DrawTennisCourt.m and a script file CornellTennis.m.

Function DrawTennisCourt draws one tennis court as specified in the problem statement in the book.
Relative to the example in §5.3, DrawTennisCourt has a similar role as the function DrawFlag. Your script
CornellTennis has the role of setting up the figure window and drawing the “tennis center” (by calling your
function DrawTennisCourt). In your script use the figure window setup commands that are used in Eg5 3

(the first four commands). Additionally, use the command hold off at the end of the script.

Download the function file DrawRect.m (same as that used previously in P2 and in Lecture). While you can
specify the color for filling the rectangle, DrawRect outlines the rectangle in black, which doesn’t look right
for our tennis court drawing. Therefore, you will modify DrawRect so that it does not outline the colored
rectangle. This can be done simply by modifying the last statement in DrawRect, which calls the built-in
function fill, to be

fill(x,y,c,’EdgeColor’,’none’)

Change the function name in the function header to be DrawRectNoBorder and save the modified function
in a file DrawRectNoBorder.m. Call DrawRectNoBorder instead of DrawRect in drawing the tennis court.
You do not need to submit the file DrawRectNoBorder.m; we will use our version of the file when we evaluate
your code.

Submit your files DrawTennisCourt.m and CornellTennis.m in CMS (after registering your group).

1



2 Further Analysis of the Golf Ball Trajectory Model

In Project 2 we simulated the trajectory of a golf ball launched into the air and subject to air drag. Now we
will perform a sensitivity analysis on the trajectory model. A sensitivity analysis is used to explore how the
result of a model changes when the inputs to the model are systematically varied, i.e., we ask the question
“how sensitive is the result to variations in the model parameters?”

Specifically, in this part of Project 3 you will investigate how the trajectory changes given changes in the
launch angle ϕ and the coefficient of friction k. We decompose the problem into two parts: (1) implementing
the trajectory simulation model as an independent function and (2) performing the sensitivity analysis by
running the model repeatedly with systematically varied inputs and producing visualizations.

2.1 Simulation model as a function

Implement the following function:

function [xvec, yvec] = golfTraj(dt,x0,y0,v0,phi,k)

% Simulate the trajectory of a golf ball from launch to landing.

% Input parameters

% dt: time step used in simulation, a positive value in seconds

% x0,y0: scalar initial x- and y-positions, in meters. y0>=0.

% v0: scalar initial velocity, a positive value in m/s

% phi: launch angle in radians, a positive value <=pi/2

% k: friction coefficient, a positive value <1

% Return parameters

% xvec,yvec: vectors of the same length storing the positions of the

% golf ball: xvec(i), yvec(i) is the position of the ball

% after the ith time step. The last value in yvec should be

% set to zero.

The simulation ends when the golf ball returns to the ground, i.e., when its y position becomes zero or
negative. The last iteration of the simulation will likely produce a negative y value instead of an “exact”
zero. You will set that last value in yvec to zero.

Below are the relevant equations for the trajectory model; the detailed explanations can be found in the
Project 2 document.

Given the initial velocity v0 and launch angle ϕ, the initial velocities in the x- and y-directions are vx =
v0 cosϕ and vy = v0 sinϕ. Let △t be a discrete time step. At each step of the simulation, compute the new
velocities and positions as follows:

vxnew = vx −△t · k · vx
√
v2x + v2y

vynew = vy −△t · (k · vy
√
v2x + v2y + g)

xnew = x+ vx · △t

ynew = y + vy · △t

where the acceleration due to gravity, g, is 9.81 m/s2.

Your code from Project 2, correct or corrected, can be the basis for this function golfTraj! You may also
choose to use the posted example solution of Project 2 as the basis. However, please be sure to use the
appropriate parameter names as specified in the above function header. Do not modify the given function
header above. Furthermore, do not just “dump” all your Project 2 golf ball simulation code into this function:
remove any part that is unnecessary for this function, i.e., carefully reconsider every part of the simulation
as you write the code.

2



2.2 Sensitivity analysis

You will evaluate the model’s sensitivity to changes in the parameters ϕ and k independently. Write a script
golfTrajSensitivity to perform the sensitivity analysis. Use these constant values: △t = .05 second,
initial position x0 = 0, y0 = 0 (in meters), and v0 = 100 m/s.

2.2.1 Sensitivity to launch angle ϕ

Run your golf trajectory model, i.e., call your function golfTraj, on several values of ϕ in this range:
0 < ϕ ≤ π/2. Use at least four and no more than six values. (Too many will produce a very busy graph.)
In these simulation runs, fix the coefficient of friction, k, at 0.02. Plot in a figure window the trajectories
for all the launch angles evaluated. The following code outline shows the relevant graphics commands for
plotting the curves:

close all % Close all figure windows

figure % Start a new figure

%%%% Sensitivity to launch angle phi

subplot(2,1,1) % First subplot in this figure window

hold all % See Note 1 below

legendText = {}; % Initialize array variable for storing text. The curly

% brace notation will be discussed later in the course.

phiVec = % Vector of launch angle values to evaluate

for i = _____ % Loop over the set of launch angle values

% Determine the trajectory for the ith launch angle and store the trajectory

% (the returned vectors of x- and y-coordinates)

% Call function plot to plot the trajectory, see Note 2 below

legendText{i} = sprintf(‘phi=%.2f’, ___); % See Note 3 below

end

legend(legendText) % Make a legend using the text in legendText

% Add a title and labels for the x and y axes

hold off % Needed before you do the next sensitivity analysis on k

Note 1 Users of Matlab 2015b or a later release may use hold on or hold all, but users of older versions
of Matlab must use hold all, which cycles the plot colors automatically so that each call to plot

produces a curve in a different color (within the built-in set of colors). hold on does not cycle the
colors in older versions of Matlab but does so in the 2015b and later releases.

Note 2 Recall that the returned vectors from function golfTraj do not include the beginning coordinates.
Therefore you need to concatenate to those returned vectors the beginning coordinates (x0, y0) in order
to plot the complete trajectory. To concatenate is to ”glue together.” Here are two examples that you
should try in Matlab:

a=3; b=[4 6]; c=[a b] % concatenate a and b horizontally into c (a row

% vector) using the space as the separator

f=[5; 7]; g=[9; 8; 6]; h=[f;g] % concatenate f and g vertically into h (a column

% vector) using the semi-colon as the separator

3



Note 3 On the blank should be the ith launch angle. Note the use of the curly brace, not parenthesis,
around the index of the variable legendText. We will discuss this kind of array later in the course.

Note 4 Observe the use of the command subplot. subplot allows us to break up the figure window into
separate sections with an independent set of axes in each section. subplot(2,1,1) says to break the
figure window into two rows by one column (so two sections, one below the other) and use the first
section. (In the next part of the sensitivity analysis, you will use subplot(2,1,2) to show a plot in
the second section.)

2.2.2 Sensitivity to coefficient of friction k

Continue writing code in golfTrajSensitivity.m to do a sensitivity analysis on k. Fix the launch angle at
π/4 and vary k over the range of 0.01 to 0.2. Again, choose four to six k values to show the variability of
the trajectory due to changes in k. Use a similar graphics framework as shown above to produce a plot of
all the trajectories at the chosen k values. This will be the second subplot in the figure, so start this second
visualization with the command subplot(2,1,2).

Finally let’s change the size of the figure window so that the two subplots are more spaced out. Write the
following statement immediately below the figure command that was used to start the figure window:

set(gcf, ’Units’, ’normalized’, ’Position’, [.3 .2 .5 .6])

This set statement positions the lower left corner of the figure window at 30% from the left edge of the
screen and 20% from the bottom edge of the screen, and sets the width and height of the figure window
to be 50% and 60% of the screen’s width and height, respectively. This and a select set of graphics format
options are presented in Appendix A: Refined Graphics in our textbook. You can also search the Matlab
documentation for even more options!

Submit your files golfTraj.m and golfTrajSensitivity.m on CMS (after registering your group).

4



3 Gas Molecules Simulation

You will develop a simulation of the movement of gas molecules in a confined 2-
dimensional space. (Or you can think about it as the motion of rigid, frictionless
billiard balls.) The molecules will bounce off walls and one another. In our
simplified model, the collisions are fully “elastic”—there is no loss of energy or
momentum.

You will simulate the molecules over T time periods. The simulation has this
organization:

• Given initial positions and velocities

• Draw all the molecules

• For each time period

– For each molecule

∗ Check for bouncing against border; update velocities and positions as necessary

∗ Check for collision with other molecules; update velocities as necessary

∗ Calculate new position

– Draw all the molecules

Using good program development practice, we first lay out the organization (as above) and then we can work
on one subproblem at a time. Another good program development strategy is to solve a simplified problem
first, so we will start with just one molecule.

Download from the course website the file gasMotionModel.m. This script is in charge of initializations and
calling the function inMotion, which you need to write, to perform the simulation. Read gasMotionModel

carefully. The script is set up to initially include only one molecule in the simulation. As you develop your
simulation you will need to change gasMotionModel.

You will submit in CMS four function files: DrawDiskNoLine.m, drawMolecules.m, inMotion.m, and
checkImpact.m. You may implement additional subfunctions in these files as you see fit, but this is not
necessary.

3.1 Drawing Molecules

Let’s start with drawing. Having this functionality allows you to easily check visually the different subprob-
lems that you’ll solve later. You’ll need two functions: DrawDiskNoLine and drawMolecules.

3.1.1 DrawDiskNoLine

You will make a simple modification to the given DrawDisk function: draw a colored disk without a black
outline. First change the function name (and therefore file name) to be DrawDiskNoLine. Next read the
original function body and note that fill is the graphics command that draws a polygon outlined in black
and fills it with a color. To draw a disk without a black outline, you will modify the last statement to call
fill as follows:

fill(x,y,c,’LineStyle’,’none’)

LineStyle is one of many properties of graphics objects in Matlab. In addition to ’none’ used here, in
previous projects you experimented with other LineStyle property values, including ’--’ for a dashed line
and ’:’ for a dotted line. There is no need to memorize such graphics options; look them up in the Matlab
documentation whenever you need them! For example, type in the the Command Window doc fill if you
wish to learn how to control the properties used by function fill.

5



3.1.2 drawMolecules

Implement function drawMolecules as specified:

function drawMolecules(x,y,r,w,h)

% % Draw all molecules with axis limits w (x direction) and h (y direction).

% x, y are vectors of the same length: (x(k),y(k)) is the position of the kth molecule.

% All molecules have radius r.

% Assume r<w/2, r<h/2, and all the molecules lie completely inside the borders.

% The first molecule is magenta; all other molecules are blue.

Start your function with these graphics commands to maintain the correct axes throughout the simulation:

cla % Clear axes (i.e., remove all drawn objects)

axis equal manual % Axes have equal scaling and are frozen at current scale

axis([0 w 0 h]) % Set axes limits: x-axis ranges from 0 to w; y-axis ranges from 0 to h

set(gca, ’xtick’, []) % No x-axis tickmarks

set(gca, ’ytick’, []) % No y-axis tickmarks

box on % Draw border

hold on % Subsequent plot/fill commands appear on current axes

Remember to put the hold off command at the end of this function. If you later have errors in your
simulation you may find it useful to see the axis tickmarks—simply temporarily comment out the two set

commands given above. Notice that the function starts with the command cla to remove previously drawn
objects. Write your code to draw one of the molecules in a different color so that later when you have a large
number of molecules it is easier to track the motion of that one molecule. Make effective use of function
DrawDiskNoLine.

Be sure to test your function. In the CommandWindow call your function drawMolecules: drawMolecules(1,3,.2,6,4)
should draw one molecule, in magenta, 1/6 the box width from the left and 3/4 the box height from the
bottom. Try other values to make sure that your function is correct.

3.2 Simulating Gas Molecule Motion

Implement function inMotion as specified:

function [xFinal,yFinal] = inMotion(x,y,vx,vy,r,w,h,T)

% Simulate the motion of molecules in a 2-d space with width w and height h

% over T time steps. All molecules have radius r.

% x and y are vectors where (x(k),y(k)) is the position of the kth particle.

% vx and vy are vectors:

% vx(k) is the x-velocity of the kth particle.

% vy(k) is the y-velocity of the kth particle.

% Return parameters:

% xFinal and yFinal store the positions of the molecules after T time steps:

% (xFinal(k),yFinal(k)) is the final position of the kth particle.

The first action (statement) in this function is to draw the molecules at their initial locations: just a call to
function drawMolecules. To start testing, run the given script gasMotionModel, which calls your function
inMotion. You should see a figure window with a title and just one molecule in magenta. Next, start
developing the simulation with just one molecule. Look at the overall algorithm given on page 5 again. Set
up the overall organization, the loop(s) and comments of the “subtasks,” in your function.

3.2.1 Simple Motion: Calculating the New Position

The distance traveled in one time step is v△t where v and △t are the velocity and the change in time,
respectively. Consider each time period a unit time, so △t = 1. Throughout this simulation we work with

6



the x and y components independently, so we have

x
′
= x+ vx and y

′
= y + vy

where x and y are the current coordinates, x
′
and y

′
are the coordinates after the time step, and vx and vy

are the x- and y-components of the current velocity of the molecule. Remember that a simulation is just an
approximation—the new position calculated may be outside the borders. So in general a realistic-looking
simulation would need low velocities (or short time steps) so that such approximation errors are small.

Draw the molecules at the end of a time period. Insert a pause (in code execution) of .01 seconds to create
the visual effect of the molecule in motion.

Run gasMotionModel for testing. You should see the molecule moving in a straight line and eventually
moving off the box (disappearing).

3.2.2 Bouncing Off the Wall

Literally. When a molecule hits a vertical wall, its x-velocity reverses—just a sign change. Similarly, the
y-velocity reverses when a molecule hits a horizontal wall. Check for bouncing off walls, and if appropriate
update the velocity components, one direction at a time. When does a molecule hit a wall? When the edge of
the molecule is currently at or beyond the border. In order to reduce the appearance of a molecule entering
a wall, if the edge of the molecule is beyond a border, update the appropriate coordinate so that the edge is
exactly at the border.

Run gasMotionModel for testing. Now the single molecule should bounce around inside the box! You should
increase the number of time steps in gasMotionModel now so that you can see several bounces off walls.
Increase the number of molecules, n in gasMotionModel, to 2. You will see that the molecules “pass through”
one another.

3.2.3 Collisions

A discussion of simple collision between two objects can be found in most elementary Physics textbooks.1

For our purposes only the “simplified” equations for calculating the post-collision velocities of two molecules

numbered 1 and 2 are given here:

v
′

1x =
1

d2x + d2y
(v2xd

2
x + v2ydxdy + v1xd

2
y − v1ydxdy)

v
′

1y =
1

d2x + d2y
(v2xdxdy + v2yd

2
y − v1xdxdy + v1yd

2
x)

v
′

2x =
1

d2x + d2y
(v1xd

2
x + v1ydxdy + v2xd

2
y − v2ydxdy)

v
′

2y =
1

d2x + d2y
(v1xdxdy + v1yd

2
y − v2xdxdy + v2yd

2
x)

where dx = x2 − x1, dy = y2 − y1, and the apostrophe, or prime symbol, indicates post-collision (i.e. v
′

1x is
the post-collision x-component of the velocity of particle 1). It does not matter which molecule is numbered
1. Of course, you apply these equations only if two molecules are colliding. In our model, two molecules
collide if there is any overlap between the molecules. Implement function checkImpact as specified:

function [vx1,vy1,vx2,vy2] = checkImpact(x1,y1,vx1,vy1,x2,y2,vx2,vy2,r)

% Check for collision between two molecules and update their velocities

% as appropriate. If there is no collision the velocities do not change.

1An excellent and concise discussion (that assumes some knowledge of vector algebra) can be found at
http://www.vobarian.com/collisions/2dcollisions2.pdf.

7



% Parameters: at current time, i.e., BEFORE checking for collision

% x1,y1 are scalars representing the position of molecule 1.

% vx1,vy1 are scalars representing the x- and y-velocities of molecule 1.

% x2,y2 are scalars representing the position of molecule 2.

% vx2,vy2 are scalars representing the x- and y-velocities of molecule 2.

% r is a scalar representing the radius of each molecule.

% Return parameters: AFTER checking for and possibly handling a collision

% vx1,vy1 are scalars representing the x- and y-velocities of molecule 1.

% vx2,vy2 are scalars representing the x- and y-velocities of molecule 2.

Test your function by calling it in the Command Window. For example, the following call should have two
molecules traveling horizontally toward each other collide head-on:

[vx1,vy1,vx2,vy2] = checkImpact(3,5,15,0,3.4,5,-15,0,.2)

The returned values should indicate that the x-velocities of the two molecules switch and the y-velocities
remain 0.

Now that you have function checkImpact, you can call it from function inMotion. We will deal with pair-
wise collisions only: for each molecule, check against all other molecules. (This is not the most efficient
algorithm, but it is fine for our simulation.) Be careful with how you set up your loops. Suppose I have four
molecules; examine the following fragment:

for k= 1:4

for j= 1:4

fprintf(’%d%d ’, k, j)

end

end

The output is 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 . That’s all combinations of the
indices but with duplications: combination 12 is the same as combination 21, for example. Additionally the
combinations “with itself” (11, 22, . . . , etc.) are included. To check all pairwise collisions, in the case of
four molecules in total, you only need to check these combinations: 12 13 14 23 24 34. Consider carefully
how you should set up your loops to include only unique—non-duplicate—combinations.

Note that we are not concerned with the error in a collision of more than two molecules given our simple
algorithm. For example, suppose molecules 1, 2, and 4 are currently positioned such that molecules 1 and
2 collide and molecules 1 and 4 collide. Given our simple pair-wise algorithm, the velocities of molecules 1
and 2 are first updated using the post-collision velocity equations shown above. So by the time molecules
1 and 4 are processed, the velocities of molecule 1 are no longer the original velocities and our code will be
calculating the post-collision velocities between molecules 1 and 4 incorrectly. We are not concerned with
such errors.

Run gasMotionModel to see the result. If two molecules seem to move correctly then change n to 3 (number
of molecules) and run the program again.

Our collision approximation scheme is far from exact, but it gives reasonable results most of the time,
especially for a small number of molecules. Visible problems (like multiple molecules stuck and tumbling
together) are seen sometimes when molecules have significant overlap before we detect a collision (velocity
values are too large or initial positions overlap), in some 3-molecule (or more) collisions, and in some collisions
at corners. We are not concerned with these errors in this project. Have fun watching the simulation!

Submit your files DrawDiskNoLine.m, drawMolecules.m, inMotion.m, and checkImpact.m on CMS.

8


